Intrinsic plasmids influence MicF-mediated translational repression of ompF in Yersinia pestis
نویسندگان
چکیده
Yersinia pestis, which is the causative agent of plague, has acquired exceptional pathogenicity potential during its evolution from Y. pseudotuberculosis. Two laterally acquired plasmids, namely, pMT1 and pPCP1, are specific to Y. pestis and are critical for pathogenesis and flea transmission. Small regulatory RNAs (sRNAs) commonly function as regulators of gene expression in bacteria. MicF, is a paradigmatic sRNA that acts as a post-transcriptional repressor through imperfect base pairing with the 5'-UTR of its target mRNA, ompF, in Escherichia coli. The high sequence conservation and minor variation in the RNA duplex of MicF-ompF has been reported in Yersinia. In this study, we utilized super-folder GFP reporter gene fusion to validate the post-transcriptional MicF-mediated regulation of target mRNA ompF in Y. pestis. Unexpectedly, upon MicF overexpression, the slightly upregulated expression of OmpF were found in the wild-type strain, which contradicted the previously established model. Interestingly, the translational repression of ompF target fusions was restored in the intrinsic plasmids-cured Y. pestis strain, suggesting intrinsic plasmids influence the MicF-mediated translational repression of ompF in Y. pestis. Further examination showed that plasmid pPCP1 is likely the main contributor to the abolishment of MicF-mediated translational repression of endogenous or plasmid-borne ompF. It represents that the possible roles of intrinsic plasmids should be considered upon investigating sRNA-mediated gene regulation, at least in Y. pestis, even if the exact mechanism is not fully understood.
منابع مشابه
Correction for Zhao et al., "Outer Membrane Proteins Ail and OmpF of Yersinia pestis Are Involved in the Adsorption of T7-Related Bacteriophage Yep-phi".
Yep-phi is a T7-related bacteriophage specific to Yersinia pestis, and it is routinely used in the identification of Y. pestis in China. Yep-phi infects Y. pestis grown at both 20°C and 37°C. It is inactive in other Yersinia species irrespective of the growth temperature. Based on phage adsorption, phage plaque formation, affinity chromatography, and Western blot assays, the outer membrane prot...
متن کاملRole of micF in the tolC-mediated regulation of OmpF, a major outer membrane protein of Escherichia coli K-12.
Mutation in the tolC locus greatly reduces normal synthesis of OmpF, a major porin protein of Escherichia coli K-12. Experiments that use ompF-ompC chimeric genes demonstrate that a tolC mutation exerts its effect at either the promoter or the amino-terminal end of the ompF gene. Direct analysis of ompF mRNA from tolC+ and tolC strains showed that the amount of ompF transcript in the latter was...
متن کاملThe leucine-responsive regulatory protein of Escherichia coli negatively regulates transcription of ompC and micF and positively regulates translation of ompF.
The two major porins of Escherichia coli K-12 strains, OmpC and OmpF, are inversely regulated with respect to one another. The expression of OmpC and OmpF has been shown to be influenced by the leucine-responsive regulatory protein (Lrp): two-dimensional gel electrophoresis of proteins from strains with and strains without a functional Lrp protein revealed that OmpC expression is increased in a...
متن کاملInfluence of Na(+), dicarboxylic amino acids, and pH in modulating the low-calcium response of Yersinia pestis.
The virulence of yersiniae is promoted in part by shared approximately 70-kb plasmids (pCD in Yersinia pestis and pYV in enteropathogenic Yersinia pseudotuberculosis and Yersinia enterocolitica) that mediate a low-calcium response. This phenotype is characterized at 37 degrees C by either bacteriostasis in Ca(2+)-deficient medium with expression of pCD/pYV-encoded virulence effectors (Yops and ...
متن کاملExpression of the plague plasminogen activator in Yersinia pseudotuberculosis and Escherichia coli.
Enteropathogenic yersiniae (Yersinia pseudotuberculosis and Yersinia enterocolitica) typically cause chronic disease as opposed to the closely related Yersinia pestis, the causative agent of bubonic plague. It is established that this difference reflects, in part, carriage by Y. pestis of a unique 9.6-kb pesticin or Pst plasmid (pPCP) encoding plasminogen activator (Pla) rather than distinction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015